Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises

نویسندگان

  • H. O. Ghaffari
  • W. A. Griffth
  • P.M. Benson
  • K. Xia
  • R. P. Young
چکیده

Characterizing the fast evolution of microstructural defects is key to understanding "crackling" phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks, and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kibble-Zurek scaling and its breakdown for spontaneous generation of Josephson vortices in Bose-Einstein condensates.

Atomic Bose-Einstein condensates confined to a dual-ring trap support Josephson vortices as topologically stable defects in the relative phase. We propose a test of the scaling laws for defect formation by quenching a Bose gas to degeneracy in this geometry. Stochastic Gross-Pitaevskii simulations reveal a -1/4 power-law scaling of defect number with quench time for fast quenches, consistent wi...

متن کامل

The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective.

It can be shown that the dynamics of the Landau-Zener model can be accurately described in terms of the Kibble-Zurek theory of the topological defect production in nonequilibrium phase transitions. The simplest quantum model exhibiting the Kibble-Zurek mechanism is presented. A new intuitive description of Landau-Zener dynamics is found.

متن کامل

Kibble-Zurek mechanism in a trapped ferromagnetic Bose-Einstein condensate.

Spontaneous spin vortex formation in a magnetic phase transition of a trapped spin-1 Bose-Einstein condensate is investigated based on mean-field theory. In a harmonic trapping potential, an inhomogeneous atomic density leads to spatial variations of the critical point, magnetization time, and spin correlation length. The Kibble-Zurek phenomena are shown to emerge even in such inhomogeneous spi...

متن کامل

Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space

The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system across a continuous phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be p...

متن کامل

Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate.

The dynamics of a quantum phase transition are explored using slow quenches from the polar to the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016